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Abstract

A major component of overfitting in model-free reinforcement learning (RL) involves the case where the
agent may mistakenly correlate reward with certain spurious features from the observations generated by
the Markov Decision Process (MDP). We provide a general framework for analyzing this scenario, which
we use to design multiple synthetic benchmarks from only modifying the observation space of an MDP.
When an agent overfits to different observation spaces even if the underlying MDP dynamics is fixed, we
term this observational overfitting. Our experiments expose intriguing properties especially with regards to
implicit regularization, and also corroborate results from previous works in RL generalization and supervised
learning (SL).

1 Introduction

Generalization for RL has recently grown to be an important topic for agents to perform well in unseen
environments. Complication arises when the dynamics of the environments entangle with the observation,
which is often a high-dimensional projection of the true latent state. One particular frame work, which we
denote the zero-shot supervised framework (Zhang et al., 2018a,c; Nichol et al., 2018; Justesen et al., 2018)
used to study RL generalization is to treat it analogous to a classical supervised learning (SL) problem –
i.e. assume there exists a distribution of MDP’s, train jointly on a finite “training set” sampled from this
distribution, and check expected performance on the entire distribution, with the fixed trained policy. In this
framework, there is a spectrum of analysis, ranging from almost purely theoretical analysis (Wang et al., 2019;
Asadi et al., 2018) to full empirical results on diverse environments (Zhang et al., 2018c; Packer et al., 2018).

However, there is a lack of analysis in the middle of this spectrum. On the theoretical side, previous works do
not provide analysis for the case when the underlying MDP is relatively complex and requires the policy to
be a non-linear function approximator such as a neural network. On the empirical side, there is no common
ground between recently proposed empirical benchmarks. This is partially caused by multiple confounding
factors for RL generalization that can be hard to identify and separate. For instance, an agent can overfit to the
MDP dynamics of the training set, such as for control in Mujoco (Pinto et al., 2017; Rajeswaran et al., 2017b).
In other cases, an RNN-based policy can overfit to maze-like tasks in exploration (Zhang et al., 2018c), or even
exploit determinism and avoid using observations (Bellemare et al., 2012; Machado et al., 2018). Furthermore,
various hyperparameters such as the batch-size in SGD (Smith et al., 2018), choice of optimizer (Kingma &
Ba, 2014), discount factor γ (Jiang et al., 2015) and regularizations such as entropy (Ahmed et al., 2018) and
weight norms (Cobbe et al., 2018) can also affect generalization.
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Due to these confounding factors, it can be unclear what parts of the MDP or policy are actually contributing
to overfitting or generalization in a principled manner, especially in empirical works with newly proposed
benchmarks. In order to isolate these factors, we study one broad factor affecting generalization that is most
correlated with themes in SL, specifically observational overfitting, where an agent overfits due to properties
of the observation which are irrelevant to the latent dynamics of the MDP family. To study this factor, we fix a
single underlying MDP’s dynamics and generate a distribution of MDP’s by only modifying the observational
outputs.

Our contributions in this paper are the following:

1. We discuss realistic instances where observational overfitting may occur and its difference from other
confounding factors, and design a parametric theoretical framework to induce observational overfitting
that can be applied to any underlying MDP.

2. We study observational overfitting with linear quadratic regulators (LQR) in a synthetic environment and
neural networks such as multi-layer perceptrons (MLPs) and convolutions in classic Gym environments.
A primary novel result we demonstrate for all cases is that implicit regularization occurs in this setting
in RL. We further test the implicit regularization hypothesis on the benchmark CoinRun from using
MLPs, even when the underlying MDP dynamics are changing per level.

The structure of this paper is outlined as follows: Section 2 discusses the motivation behind this work and the
synthetic construction to abstract certain observation effects. Section 3 demonstrates numerous experiments
using this synthetic construction that suggest implicit regularization is at work. Finally, Section 4 tests the
implicit regularization hypothesis, as well as ablates various ImageNet architectures and margin metrics.

2 Motivation and Related Work

We start by showing an example of observational overfitting, found from the Gym-Retro benchmark for the
game Sonic The Hedgehog (Nichol et al., 2018). In this benchmark, the agent is given 47 training levels with
rewards corresponding to increases in horizontal location. The policy is trained until 5K reward. At test time,
11 unseen levels are partitioned into starting positions, and the rewards are measured and averaged.

As shown in Figure 1, by using saliency maps (Greydanus et al., 2018), we found that the agent strongly
overfits to the scoreboard/timer (i.e. an artifact correlated with progress in the level through determinism). In
fact, by only showing the scoreboard as the observation, we found that the agent was still able to train to 5K
reward. By blacking out this scoreboard with a black rectangle in the regular image during training, we saw an
increase in test performance performance by 10% for both the NatureCNN and IMPALA policies described in
(Cobbe et al., 2018). Specifically, in terms of mean reward across training runs, NatureCNN increased from
1052 to 1141, while IMPALA increased from 1130 to 1250 when the standard deviation between runs was 40.

Furthermore, we found that background objects such as clouds and textures were also highlighted, suggesting
that they are also important features for training the agent. One explanation for this effect is due to the
benchmark being from a sidescroller game - the background objects move backward as the character moves
forward, thus making them correlated with progress.

This example highlights the issues surrounding MDP’s with rich, textured observations - specifically, the agent
can use any features that are correlated with progress, even those which may not generalize across levels. This
is an important issue for vision-based policies, as many times it is not obvious what part of the observation
causes an agent to act or generalize.
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Figure 1: Example of observational overfitting in Sonic. Saliency maps highlight (in red) the top-left timer and
background objects because they are correlated with progress.

Currently most architectures used in model-free RL are simple (with fewer than one million parameters)
compared to the much larger and more complex ImageNet architectures used for classification. This is due to
the fact that most RL environments studied either have relatively simple and highly structured images (e.g.
Atari) compared to real world images, or conveniently do not directly force the agent to observe highly detailed
images. For instance in large scale RL such as DOTA2 (OpenAI, 2018) or Starcraft 2 (Vinyals et al., 2017),
the agent observations are internal minimaps pertaining to object xy-locations, rather than human-rendered
observations.

2.1 What Happens in Observation Space?

Several artificial benchmarks (Zhang et al., 2018b; Gamrian & Goldberg, 2019) have been proposed before
to portray this notion of overfitting, where an agent must deal with a changing background - however, a key
difference in our work is that we explicitly require the “background” to be correlated with the progress
rather than loosely correlated (e.g. through determinism between the background and the game avatar) or
not at all. This makes a more explicit connection to causal inference (Arjovsky et al., 2019; Heinze-Deml &
Meinshausen, 2019; Heinze-Deml et al., 2019) where spurious correlations between ungeneralizable features
and progress may make training easy, but are detrimental to test performance because they induce false
attributions.

Previously, many works interpret the decision-making of an agent through saliency and other network
visualizations (Greydanus et al., 2018; Such et al., 2018) on common benchmarks such as Atari. Other recent
works such as (Igl et al., 2019) analyze the interactions between noise-injecting explicit regularizations and
the information bottleneck. However, our work is motivated by learning theoretic frameworks to capture this
phenomena, as there is vast literature on understanding the generalization properties of SL classifiers (Vapnik
& Chervonenkis, 1971; McAllester, 1999; Bartlett & Mendelson, 2002) and in particular neural networks
(Neyshabur et al., 2015; Dziugaite & Roy, 2017; Neyshabur et al., 2017; Bartlett et al., 2017; Arora et al.,
2018b). For an RL policy with high-dimensional observations, we hypothesize its overfitting can come from
more theoretically principled reasons, as opposed to purely good inductive biases on game images.

As an example of what may happen in high dimensional observation space, consider linear least squares
regression task where given the set X ∈ Rm×d and Y ∈ Rm, we want to find w ∈ Rd that minimizes
`X,Y (w) = ‖Y −Xw‖2 where m is the number of samples and d is the input dimension. We know that if
X>X is full rank (hence d ≤ m), `X,Y (.) has a unique global minimum w∗ = (X>X)−1X>Y . On the other
hand if X>X is not full rank (eg. when m < d), then there are many global minima w∗ such that Y = Xw∗ 1.
Luckily, if we use any gradient based optimization to minimize the loss and initialize with w = 0, the solution

1Given any X with full rank X>X , it is possible to create many global minima by projecting the data onto high dimensions using a
semi-orthogonal matrix Z ∈ Rd×d′ where d′ > m ≥ d and ZZ> = Id. Therefore, we the loss `XZ,Y (w) = ‖Y −XZw‖2 will
have many global optima w∗ with Y = XZw∗.
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will only span column spaces of X and converges to minimum `2 norm solution among all global minima
due to implicit regularization Gunasekar et al. (2017). Thus a high dimensional observation space with a low
dimensional state space can induce multiple solutions, some of which are not generalizable to other functions
or MDP’s but one could hope that implicit regularization would help avoiding this issue.

2.2 Notation

In the zero-shot framework for RL generalization, we assume there exists a distribution D over MDP’sM for
which there exists a fixed policy πopt that can achieve maximal return on expectation over MDP’s generated
from the distribution. An appropriate finite training set M̂train = {M1, . . . ,Mn} can then be created by
repeatedly randomly samplingM∼ D. Thus for a MDPM and any policy π, expected episodic reward is
defined as RM(π).

In many empirical cases, the support of the distributionD is made by parametrized MDP’s where some process,
given a parameter θ, creates a mapping θ → Mθ (e.g. through procedural generation), and thus we may
simplify notation and instead define a distribution Θ that induces D, which implies a set of samples Θ̂train =

{θ1, . . . , θn} also induces a M̂train = {M1, . . . ,Mn}, and we may redefine reward as RMθ
(π) = Rθ(π).

As a simplified model of the observational problem from Sonic, we can construct a mapping θ →Mθ by first
fixing a base MDPM = (S,A, r, T ), which corresponds to state space, action space, reward, and transition.
The only effect of θ is to introduce an additional observation function φθ : S → O, where the agent receives
input from the high dimensional observation space O rather than from the state space S . Thus, for our setting,
θ actually parameterizes a POMDP family which can be thought of as simply a combination of a base MDP
M and an observational function φθ, henceMθ = (M, φθ).

Let Θ̂train = {θ1, . . . , θn} be a set of n i.i.d. samples from Θ, and suppose we train π to optimize reward
against {Mθ : θ ∼ Θ̂train}. The objective JΘ̂(π) = 1

|Θ̂train|

∑
θi∈Θ̂train

Rθi(π) is the average reward over
this empirical sample. We want to generalize to the distribution Θ, which can be expressed as the average
episode reward R over the full distribution, i.e. JΘ(π) = Eθ∼Θ [Rθ(π)]. Thus we define the generalization
gap as JΘ̂(π)− JΘ(π).

2.3 Setup

We can model the effects of Figure 1 more generally, not specific to sidescroller games. We assume that there
is an underlying state s (e.g. xy-locations of objects in a game), whose features may be very well structured,
but that this state has been projected to a high dimensional observation space by φθ. To abstract the notion of
generalizable and non-generalizable features, we construct a simple and natural candidate class of functions,
where

φθ(s) = h(f(s), gθ(s)) (1)

In this setup, f(·) is a function invariant for the entire MDP population Θ, while gθ(·) is a function dependent
on the sampled parameter θ. h is a ”combination” function which combines the two outputs of f and g to
produce a final observation. While f projects this latent data into salient and important, invariant features such
as the avatar, monsters, and items, gθ projects the latent data to unimportant features that do not contribute
to extra generalizable information, and can cause overfitting, such as the changing background or textures.
A visual representation is shown in Figure 2. This is a simplified but still insightful model relevant in more
realistic settings. For instance, in settings where gθ does matter, learning this separation and task-identification
(Yu et al., 2017; Peng et al., 2018) could potentially help fast adaptation in meta-learning (Finn et al., 2017).
From now on, we denote this setup as the (f, g)-scheme.

This setting also leads to more interpretable generalization bounds - Lemma 2 of (Wang et al., 2019) provides
a high probability (1 − δ) bound for the “intrinsic” generalization gap when m levels are sampled: gap ≤
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(a) (b)

Figure 2: (a) Visual Analogy of the Observation Function. (b) Our combinations for 1-D (top) and 2-D
(bottom) images for synthetic tasks.

Radm(RΠ)+O
(√

log(1/δ)
m

)
, whereRadm(RΠ) = E(θ1,...,θm)∼Θm

[
Eσ∈{−1,+1}

[
supπ∈Π

1
m

∑m
i=1 σiRθi(π)

] ]
is the Rademacher Complexity under the MDP, where θi are the ζi parameters used in the original work, and
the transition T and initialization I are fixed, therefore omitted, to accommodate our setting.

The Rademacher Complexity term captures how invariant policies in the set Π with respect to θ. For most RL
benchmarks, this is not interpretable due to multiple confounding factors such as the varying level dynamics.
For instance, it is difficult to imagine what behaviors or network weights a policy would possess in order to
produce the same total rewards, regardless of changing dynamics.

However, in our case, because the environment parameters θ are only from gθ, the Rademacher Com-
plexity is directly based on how much the policy “looks at” gθ. More formally, let Π∗ be the set of
policies π∗ which are not be affected by changes in gθ; i.e. ∇θπ∗(φθ(s)) = 0 ∀s and thus Rθ(π∗) =
Rconst ∀θ, which implies that the environment parameter θ has no effect on the reward; hence Radm(RΠ∗) =
Eσ∈{−1,+1}

[
supπ∗∈Π∗

1
m

∑m
i=1 σiRconst

]
= 0.

2.4 Architecture and Implicit Regularization

Normally in a MDP such as a game, the concatenation operation may be dependent on time (e.g. textures
move around in the frame). In the scope of this work, we simplify the concatenation effect and assume h(·) is
a static concatenation, but still are able to demonstrate insightful properties. We note that this inductive bias
on h allows explicit regularization to trivially solve this problem, by penalizing a policy’s first layer that is
used to “view” gθ(s) (Appendix A2), hence we only focus on implicit regularizations.

This setting is naturally attractive to analyzing architectural differences, as it is more closely related in
spirit to image classifiers and SL. One particular line of work to explain the effects of certain architectural
modifications in SL such as overparametrization and residual connections is implicit regularization (Neyshabur,
2017; Neyshabur et al., 2018b), as overparametrization through more layer depth and wider layers has proven
to have no `p-regularization equivalent (Arora et al., 2019), but rather precondition the dynamics during
training. Thus, in order to fairly experimentally measure this effect, we always use fixed hyperparameters and
only vary based on architecture. In this work, we only refer to architectural implicit regularization techniques,
which do not have a explicit regularization equivalent. Some techniques e.g. coordinate descent (Bradley et al.,
2011) are equivalent to explicit `1-regularization.
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3 Experiments

3.1 WarmUp - LQR

We start with a a principled example in the deterministic classic control setting, by using the linear quadratic
regulator (LQR) as a basis for the underlying MDP. We use full gradient descent through the loss, ignoring
confounding aspects of RL (exploration, entropy, γ, noise, stochastic gradients, etc.). Furthermore, all minima
in a single LQR are global minima, and hence asymptotic training performance is always the same. For a given
θ, we let f(s) = Wconstant · s, while gθ(s) = Wθ · s where Wconstant,Wθ are semi-orthogonal matrices, to
prevent information loss relevant to outputting the optimal action, as the state is transformed into observation.
We sample Wθ randomly, using a scalar integer θ as the seed for random generation. In terms of dimensions, if
s is of shape dstate, then f also projects to a shape of dstate, while gθ projects to a much larger shape dnoise,
implying that the observation to the agent is of dimension dsignal + dnoise. In our experiments, we set as
default (dsignal, dnoise) = (100, 1000).

A key insight is that that a policy in high dimensional policy K acting on observation Ws is equivalent to a
low-dimensional policy Kstate = KW acting on state s. We begin with a theorem which implies that a high
dimensional observational space directly contributes to overfitting:

Theorem 3.1 For LQR’s whose observation consists of (dsignal, dnoise)-dimensional vectors constructed
with the (f, g)-scheme and fixed number of training levels m, the generalization gap upper bound scales with
O(
√
dnoise) with high probability.

We empirically verify that this bound is tight in Figure 3 and defer the detailed proof to Appendix A.4.3. Denote
‖·‖, ‖·‖1, ‖·‖F as the spectral, `1, and Frobenius norms respectively of a matrix. Furthermore, the continuity
of the cost function (Fazel et al., 2018) states that C(Kstate)− C(K ′state) ≤ O(‖Kstate −K ′state‖

3
), which

implies that gap ≤
√
O(‖Kstate‖3)

m . By semi-orthogonality ‖W‖ ≤ 1, hence ‖KW‖ ≤ ‖K‖. Since the
spectral norm ‖K‖ of a random matrix scales with its dimension d by d1/3 (Vu, 2007), thus the generalization

gap also scales with the size of
√

(d
1/3
noise)

3 =
√
dnoise.

Note the significant difference from SL bounds: C(K)−C(K ′) ≤ O(‖K −K ′‖d), where d = 3 for our LQR
case, whereas classification only uses d = 1 bounds and are mainly concerned with the Lipschitz constant.
We conjecture that this difference is key to why SL bounds do not properly bound the RL generalization gap,
especially shown in our overparametrization results shown below. To the best of our knowledge, our problem
is not equivalent to any of the well-studied problems in overparametrization.

Experimentally, we added more (100 × 100) linear layers K = K0K1, ...,Kj and increased widths for a
2-layer case (Figure 3), and observe that both settings reduce the generalization gap, and also reduce the norms
(spectral, nuclear, Frobenius) of the final end-to-end policy K, without changing its expressiveness. This
suggests that gradient descent under overparametrization implicitly biases the policy towards a “simpler” model
in the LQR case. However, how do we quantify this intuition by bounding the generalization performance
of the final policy K in terms of norm functions of the layers K0, ...,Kj? For instance, from examining the
distribution of singular values on K (Appendix A1), we find that more layers does not bias the policy towards
a low rank solution in the nonconvex LQR case, unlike (Arora et al., 2018a) which shows this does occur for
matrix completion, and in general, convex losses.

Since our setup is similar to SL in that “LQR levels” which may be interpreted as a dataset, we use bounds of
the form ∆·Φ, where ∆ is a “macro” product term ∆ =

∏j
i=0 ‖Ki‖ ≥

∥∥∥∏j
i=0Ki

∥∥∥ derivable from the fact that
‖AB‖ ≤ ‖A‖ ‖B‖ in the linear case, and Φ is a weight-counting term which deals with the overparametrized

case, such as Φ =
∑j
i=0

‖Ki‖2F
‖Ki‖2

(Neyshabur et al., 2018a) or Φ =

(∑j
i=0

(
‖Ki‖1
‖Ki‖

)2/3
)3

(Bartlett et al.,
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2017). While gap ≤
√
O(‖Kraw‖3) ≤ O(

∏j
i=0 ‖Ki‖

3
2 ) = ∆3/2, we may replace any SL perturbation

bounds |fK(x)− fK′(x)| with C(K)−C(K ′) ≤ O(‖K −K ′‖3), which can grant us expressions similar to
Φ, but with different exponents. However, the Φ terms increase too rapidly as shown in Figure 3.

Terms such as Frobenius product (Golowich et al., 2018) and Fischer-Rao (Liang et al., 2019) are effective
for the SL depth case, but are both ineffective in the LQR depth case. For width, the only product which is
effective is the nuclear norm product.

Figure 3: (Left) We show that the generalization gap vs noise dimension is tight as the noise dimension
increases, showing that this bound is accurate. (Middle and Right) LQR Generalization Gap vs Number of
Intermediate Layers. We plotted different Φ =

∑j
i=0

‖A‖∗
‖A‖ terms without exponents, as powers of those terms

are monotonic transforms since ‖A‖∗‖A‖ ≥ 1 ∀A and ‖A‖∗ = ‖A‖F , ‖A‖1. We see that the naive spectral bound
diverges at 2 layers, and the weight-counting sums are too loose.
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3.2 Projected Gym Environments

In Section 3.1, we find that observational overfitting exists and overparametrization potentially helps in
the linear setting. We perform the (f, g)-scheme again on nonlinear, common Gym environments, and use
Proximal Policy Gradient (PPO) (Schulman et al., 2017) for optimization. While Section 3.1 used exact
gradients that differentiate through the environment’s cost function, it is not at all obvious that the same
overparametrization effects would hold true using PPO. This is because there are numerous moving parts in
the optimization procedure, including the PPO surrogate loss which is a biased estimate of∇J(π), as well as
the additional surrogate objective due to value function estimation.

Nevertheless, we apply the same observation transformation in the Gym case - i.e. given a 1-D state s, we
project it to an observation φθ(s) using the same observation function as the LQR case. We first observe
empirically that the underlying state dynamics has a significant effect on generalization performance as the
policy nontrivially increased test performance such as in CartPole-v1 and Swimmer-v2, while it could not for
others. This suggests that the Rademacher Complexity and the weight-perturbation bound for rewards vary
highly for different environments.
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Figure 4: Each Mujoco task is given 10 training levels (randomly sampling gθ parameters). We used a 2-layer
ReLU policy, with 128 hidden units each. Dimensions of outputs of (f, g) were (30, 100) respectively.

Switching between ReLU and Tanh activations produces different results during overparametrization. For
instance, increasing Tanh layers improves generalization on CartPole-v1, and width increase with ReLU helps
on Swimmer-v2. Tanh is noted to consistently improve generalization performance. However, stacking Tanh
layers comes at a cost of also producing vanishing gradients which can produce subpar training performance,
for e.g. HalfCheetah. To allow larger depths, we use ReLU residual layers, which also improves generalization
and stabilizes training.

Previous work (Zhang et al., 2018c) did not find such an architectural pattern for GridWorld environments,
suggesting that this effect may exist primarily for observational overfitting cases. While there have been
numerous works which avoid overparametrization on simplifying policies (Rajeswaran et al., 2017a; Mania
et al., 2018) or compactifying networks (Choromanski et al., 2018; Gaier & Ha, 2019), we instead find that
there are generalization benefits to overparametrization even in the nonlinear control case.

Figure 5: Effects of Depth.
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Figure 6: Effects of Width.

3.3 Deconvolutional Projections

From the above results with MLP’s, one may wonder if similar results may carry to convolutional networks,
as they are mainly used for vision-based RL tasks. As a ground truth reference for our experiment, we the
canonical networks proven to generalize well in the dataset CoinRun, which are from worst to best, NatureCNN
Mnih et al. (2013), IMPALA Espeholt et al. (2018), and IMPALA-LARGE (IMPALA with more residual
blocks and higher convolution depths), which have respective parameter numbers (600K, 622K, 823K).

We setup a similar (f, g)-scheme appropriate for the inductive bias of convolutions, by projecting the state
latent to a fixed length, reshaping it into a square, and replacing f and gθ both with the same orthogonally-
initialized deconvolution architecture to each produce a 84 × 84 image (but gθ’s network weights are still
generated by θ1, ..., θm similar to before). We combine the two outputs by using one half of the ”image” from
f , and one half from gθ, as shown back in Figure 2.

Figure 7: Performance of architectures in the synthetic Gym-Deconv dataset. To cleanly depict test perfor-
mance, training curves are replaced with horizontal (max env. reward) and vertical black lines (avg. timestep
when all networks reach max reward).

Figure 7 shows that the same ranking between the three architectures exists as well on the Gym-Deconv
dataset. This consistency in results suggests that the observational overfitting framework is correlated with the
generalization issues found in CoinRun. Furthermore, this also suggests that the RL generalization quality of a
convolutional architecture is not limited to real world data, as our test purely uses numeric observations - i.e.
the observation is simply unintelligible static if represented in human format.
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Figure 8: We only show the observation from gθ(s), which tests memorization capacity on Swimmer-v2.

We also perform a memorization test by only showing gθ’s output to the policy in Figure 8. This makes the
dataset impossible to generalize to, as the policy network cannot invert every single observation function
gθ1(·), gθ2(·), ... simultaneously. (Zhang et al., 2018c) also constructs a memorization test for mazes and
grid-worlds, and showed that more parameters increased the memorization ability of the policy. We show in
the bottom figure that this is perhaps not a complete picture when implicit regularization becomes involved.

Using the underlying MDP as a Swimmer-v2 environment, we see that NatureCNN, IMPALA, IMPALA-
LARGE have reduced memorization performances. IMPALA-LARGE, which has more depth parameters and
more residual layers (and thus technically has more capacity), memorizes less than IMPALA due its inherent
inductive bias.

We perform another deconvolution memorization test, using an LQR as the underlying MDP. While Figure 7
shows that memorization performance is dampened, Figure 9 shows that there can exist specific hard limits to
memorization. Specifically, NatureCNN can memorize 30 levels, but not 50; IMPALA can memorize 2 levels
but not 5; IMPALA-LARGE cannot memorize 2 levels at all.

Figure 9: Memorization Test using LQR as underlying MDP, showing hard limits.
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We hypothesize that these extra residual blocks in IMPALA and IMPALA-LARGE may be implicitly regu-
larizing the network. This is corroborated by the fact that residual layers are also explained as an implicit
regularization technique (Neyshabur, 2017) for SL.
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4 Observational Overfitting in CoinRun

For reference, we also extend the case of large-parameter convolutional networks using ImageNet networks.
We experimentally verify in Table 1 that large ImageNet models perform very differently in RL than during
SL. We note that default network with the highest test reward was IMPALA-LARGE-BN (IMPALA-LARGE,
with Batchnorm) at ≈ 5.5 test score.

In order to verify that this is inherently a feature learning problem rather than a combinatorial problem
involving objects, such as in (Santoro et al., 2018), we show that state-of-the-art attention mechanisms for RL
such as Relational Memory Core (RMC) using pure attention on raw 32× 32 pixels does not perform well
here, showing that a large portion of generalization and transfer must be based on correct convolutional setups.

Architecture
Coinrun-100
(Train, Test)

AlexNet-v2 (10.0, 3.0)
CifarNet (10.0, 3.0)
IMPALA-
LARGE-BN (10.0, 5.5)

Inception-ResNet-v2 (10.0, 6.5)
Inception-v4 (10.0, 6.0)
MobileNet-v1 (10.0, 5.5)
MobileNet-v2 (10.0, 5.5)
NASNet-
CIFAR (10.0, 4.0)

NASNet-
Mobile (10.0, 4.5)

ResNet-v2-50 (10.0, 5.5)
ResNet-v2-101 (10.0, 5.0)
ResNet-v2-152 (10.0, 5.5)
RMC32x32 (9.0, 2.5)
ShakeShake (10.0, 6.0)
VGG-A (9.0, 3.0)
VGG-16 (9.0, 3.0)

Table 1: Raw Network Performance (rounded to nearest 0.5) on CoinRun, 100 levels. Images scaled to default
image sizes (32× 32 or 224× 224) depending on network input requirement. See Appendix A3 for training
curves.

4.1 Overparametrization

We further test our overparametrization hypothesis from Sections 3.1, 3.2 to the CoinRun benchmark, using
unlimited levels for training. For MLP networks, we downsized CoinRun from native 64 × 64 to 32 × 32,
and flattened the 32× 32× 3 image for input to an MLP. Two significant differences from the synthetic cases
are that 1. inherent dynamics are changing per level in CoinRun, and 2. the relevant and irrelevant CoinRun
features change locations across the 1-D input vector. Regardless, we show that overparametrization can still
improve generalization in this more realistic RL benchmark, much akin to (Neyshabur et al., 2018b) which
showed that overparametrization for MLP’s improved generalization on 32× 32× 3 CIFAR-10.
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Figure 10: Overparametrization improves generalization for CoinRun.

4.2 Do State-Action Margin Distributions Predict Generalization in RL?

A key question is how to predict the generalization gap only from the training phase. A particular set of metrics,
popular in the SL community are margin distributions (Jiang et al., 2018; Bartlett et al., 2017), as they deal
with the case for softmax categorical outputs which do not explicitly penalize the weight norm of a network,
by normalizing the ”confidence” margin of the logit outputs. While using margins on state-action pairs (from
an on-policy replay buffer) is not technically rigorous, one may be curious to see if they have predictive power,
especially as MLP’s are relatively simple to norm-bound, and as seen from the LQR experiments, the norm of
the policy may be correlated with the generalization performance.

For a policy, the the margin distribution will be defined as (s, a)→ Fπ(s)a−maxi6=y Fπ(x)i
Rπ‖S‖2/n

, where Fπ(s)a is
the logit value of action a given input s, before the softmax, and S is the matrix of states in the replay buffer,
andRπ is the norm-based Lipschitz bound on the policy network logits. We used the Spectral, Sharpness and
Bartlett bounds, for Rπ, and we replace the classical supervised learning pair (x, y) = (s, a) with the state
action pairs found on-policy.

The expressions forRπ (after removing irrelevant constants) are as follows:

1. Bartlett Bound:
(∏d

i=1 ‖Wi‖
)(∑d

i=1
‖Wi‖2/31

‖Wi‖2/3

)3/2

(Bartlett et al., 2017)

2. Sharpness Bound:

√∑d
i=1‖Wi−W 0

i ‖2F+ln(2m/δ)

m ()

3. Spectral Bound:

√
ln(d)

∏d
i=1‖Wi‖22

∑d
j=1

‖Wj−W0
j ‖2F

‖Wj‖22
+ln( 6m

δ )

m ()

We verify in Figure 11, that indeed, simply measuring the raw norms of the policy network is a poor way to
predict generalization, as it generally increases even as training begins to plateau. This is inherently because
the softmax on the logit output does not penalize arbitrarily high logit values, and hence proper normalization
is needed.

The margin distribution converges to a fixed distribution even long after training has plateaued. However,
unlike SL, the margin distribution is conceptually not fully correlated with RL generalization on the total
reward, as a policy overconfident in some state-action pairs does not imply bad testing performance. This
correlation is stronger if there are Lipschitz assumptions on state-action transitions, as noted in (Wang et al.,
2019). For empirical datasets such as CoinRun, a metric-distance between transitioned states is ill-defined
however. Nevertheless, the distribution over the on-policy replay buffer at each policy gradient iteration is a
rough measure of overall confidence.
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Figure 11: Margin Distributions at the end of training.

We note that there are two forms of modifications, network dependent (explicit modifications to the policy -
norm regularization, dropout, etc.) and data dependent (modifications only to the data in the replay buffer
- action stochasticity, data augmentation, etc.). Ultimately however, we find that current norm bounds Rπ
become too dominant in the fraction, leading to the monotonic decreases in the means of the distributions as
we increase parametrization.

Figure 12: Margin Distributions at the end of training.

This, with the bound results found earlier for the LQR case, suggests that current norm bounds are simply
too loose for the RL case even though we have shown overparametrization helps generalization in RL, and
hopefully this motivates more of the study of such theory.
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5 Conclusion

We have identified and isolated a key component of overfitting in RL as the particular case of “observational
overfitting”, which is particularly attractive for studying architectural implicit regularizations. We have
analyzed this setting extensively, by examining 3 main components:

1. The analytical case of LQR and linear policies under exact gradient descent, which lays the foundation
for understanding theoretical properties of networks in RL generalization.

2. The empirical but principled Projected-Gym case for both MLP and convolutional networks which
demonstrates the effects of neural network policies under nonlinear environments.

3. The large scale case for CoinRun, which can be interpreted as a case where relevant features are moving
across the input, where empirically, MLP overparametrization also improves generalization.

We noted that current network policy bounds using ideas from SL are unable to explain overparametrization
effects in RL, which is an important further direction. In some sense, this area of RL generalization is an
extension of static SL classification from adding extra RL components. For instance, adding a nontrivial
“combination function” between f and gθ that is dependent on time (to simulate how object pixels move in a
real game) is both an RL generalization issue and potentially video classification issue, and extending results
to the memory-based RNN case will also be highly beneficial.

Furthermore, it is unclear whether such overparametrization effects would occur in off-policy methods
such as Q-learning and also ES-based methods. In terms of architectural design, recent works (Jacot et al.,
2018; Garriga-Alonso et al., 2019; Lee et al., 2019) have shed light on the properties of asymptotically
overparametrized neural networks in the infinite width and depth cases and their performance in SL. Potentially
such architectures (and a corresponding training algorithm) may be used in the RL setting which can possibly
provide benefits, one of which is generalization as shown in this paper. We believe that this work provides an
important initial step towards solving these future problems.
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pp. 1406–1415, 2018.

15

http://arxiv.org/abs/1907.02893
http://arxiv.org/abs/1905.13655
https://icml.cc/2011/papers/231_icmlpaper.pdf
https://icml.cc/2011/papers/231_icmlpaper.pdf
http://proceedings.mlr.press/v80/choromanski18a.html
http://proceedings.mlr.press/v80/choromanski18a.html


Maryam Fazel, Rong Ge, Sham Kakade, and Mehran Mesbahi. Global convergence of policy gradient methods
for the linear quadratic regulator. In Proceedings of the 35th International Conference on Machine Learning,
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A.1 Full Plots for LQR and fg-Gym

A.1.1 LQR

Figure A1: (a,b): Singular Values for varying depths and widths. (c,d): Train and Test Loss for varying widths
and depths. (e): Train and Test Loss for varying Noise Dimensions.

(a) (b)

(c) (d)

(e)

We further verify that explicit regularization (norm based penalties) also reduces generalization gaps. However,
explicit regularization may be explained due to the bias of the synthetic tasks, since the first layer’s matrix may
be regularized to only ”view” the output of f , especially as regularizing the first layer’s weights substantially
improves generalization.
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Figure A2: Explicit Regularization on layer norms.
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A.2 Large ImageNet Models for CoinRun

We provide the training/testing curves for the ImageNet/large convolutional models used. Note the following:

1. RMC32x32 projects the native image from CoinRun from 64 × 64 to 32 × 32, and uses all pixels
as components for attention, after adding the coordinate embedding found in (Santoro et al., 2018).
Optimal parameters were (mem slots = 4, head size = 32, num heads = 4, num blocks = 2, gate style =
’memory’).

2. Auxiliary Loss in ShakeShake was not used during training, only the pure network.
3. VGG-A is a similar but slightly smaller version of VGG-16.

Figure A3: Large Architecture Training/Testing Curves (Smoothed).

A.3 Hyperparameters and Exact Setups

A.3.1 Exact infinite LQR

For infinite horizon case, see (Fazel et al., 2018) for the the full solution and notations. Using the same notation
(A,B,Q,R), denote C(K) =

∑
x0∼D x

T
0 PKx0 as the cost and ut = −Kxt as the policy, where PK satisfies
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the infinite case for the Lyapunov equation:

PK = Q+KTRK + (A−BK)TPK(A−BK) (2)

We may calculate the precise LQR cost by vectorizing (i.e. flattening) both sides’ matrices and using
the Kroncker product ⊗, which leads to a linear regression problem on PK , which has a precise solution,
implementable in TensorFlow:

vec(PK) = vec(Q) + vec(KTRK) +
[
(A−BK)T ⊗ (A−BK)T )

]
vec(PK) (3)

[
In2 − (A−BK)T ⊗ (A−BK)T

]
vec(PK) = vec(Q) + vec(KTRK) (4)

Parameter Generation
A Orthogonal initialization, scaled 0.99
B In
Q In
R In
n 10
Ki ∀i Orthogonal Initialization, scaled 0.5

Table 2: Hyperparameters for LQR

A.3.2 Projection Method

The basis for producing f, gθ outputs is due to using batch matrix multiplication operations, or ”BMV”, where
the same network architecture uses different network weights for each batch dimension, and thus each entry in
a batchsize of B will be processed by the same architecture, but with different network weights. This is to
simulate the effect of gθi . The numeric ID i of the environment is used as an index to collect a specific set of
network weights θi from a global memory of network weights (e.g. using tensorflow.gather). We did
not use nonlinear activations for the BMV architectures, as they did not change the outcome of the results.

Architecture Setup
BMV-Deconv (filtersize = 2, stride = 1, outchannel = 8, padding = ”VALID”)

(filtersize = 4, stride = 2, outchannel = 4, padding = ”VALID”)
(filtersize = 8, stride = 2, outchannel = 4, padding = ”VALID”)
(filtersize = 8, stride = 3, outchannel = 3, padding = ”VALID”)

BMV-Dense f : Dense 30, g : Dense 100

A.3.3 ImageNet Models

For the networks used in the supervised learning tasks, we direct the reader to the following reposi-
tory: https://github.com/tensorflow/models/blob/master/research/slim/nets/
nets_factory.py. We also used the RMC: deepmind/sonnet/blob/master/sonnet/python/
modules/relational_memory.py

A.3.4 PPO Parameters

For the projected gym tasks, we used for PPO2 Hyperparameters:
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PPO2 Hyperparameters Values
nsteps 2048
nenvs 16
nminibatches 64
λ 0.95
γ 0.99
noptepochs 10
entropy 0.0
learning rate 3 · 10−4

vf coeffiicent 0.5
max-grad-norm 0.5
total time steps Varying

See (Cobbe et al., 2018) for the default parameters used for CoinRun. We only varied nminibatches in order
to fit memory onto GPU. We also did not use RNN additions, in order to measure performance only from
the feedforward network - the framestacking/temporal aspect is replaced by the option to present the agent
velocity in the image.

A.4 Theoretical Results (LQR)

See (Fazel et al., 2018) for more extensive LQR notation and statements that we will use. Below proofs of
certain overfitting properties in the LQR case, which give more rigorous bounds.

A.4.1 Notation and Setting

Let ‖·‖ be the spectral norm of a matrix (i.e. largest singular value). Suppose C(K) was the infinite horizon
cost for an (A,B,Q,R)-LQR where action at = −K · xt, xt is the state at time t, state transition is
xt+1 = A · xt +B · at, and timestep cost is xTt Qxt + aTt Rat.

C(K) for an infinite horizon LQR, while known to be non-convex, still possess the property that when
∇C(K∗) = 0, K is a global minimizer, or the problem statement is rank deficient. By varying the observation
projections, θ generates a population of Cθ(K) cost functions with all of the population having the same
minimizer K∗.

To ensure that our cost C(K) always remains finite, we restrict our analysis when K ∈ K, where K =
{K : ‖K‖ ≤ c and ‖A−BK‖ ≤ 1} for some constant c, by choosing A,B and the initialization of K
appropriately, using the hyperparameters found in A.3.1.

A.4.1.1 Smoothness Bounds

As described in Lemma 16 of (Fazel et al., 2018), we define

TK(X) =

∞∑
t=0

(A−BK)tX[(A−BK)T ]t (5)

and ‖TK‖ = supX
TK(X)
‖X‖ over all non-zero symmetric matrices X .

Lemma 27 of (Fazel et al., 2018) provides a bound on the difference C(K ′) − C(K) for two different
policies K,K ′ when LQR parameters A,B,Q,R are fixed. During the derivation, it states that when
‖K −K ′‖ ≤ min

(
σmin(Q)µ

4C(K)‖B‖(‖A−BK‖+1) , ‖K‖
)

, then

C(K ′)− C(K) ≤ E ‖x0‖2 ‖PK′ − PK‖ (6)
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where PK =
∥∥TK(Q+KTRK)

∥∥, and ‖PK′ − PK‖ is bounded by the sum of two terms, which are
2 ‖TK‖ (3 ‖K‖ ‖R‖ ‖K ′ −K‖) and 2 ‖TK‖2 2 ‖B‖ (‖A−BK‖+ 1) ‖K −K ′‖ ‖K‖2 ‖R‖.

Thus we have the bound

C(K ′)− C(K) ≤ 2 ‖TK‖ (2 ‖K‖ ‖R‖ ‖K ′ −K‖+ ‖R‖ ‖K ′ −K‖2)+

2 ‖TK‖2 2 ‖B‖ (‖A−BK‖+ 1) ‖K −K ′‖ ‖K‖2 ‖R‖
(7)

Lemma 17 also states that:

‖TK‖ ≤
C(K)

µσmin(Q)
(8)

where
µ = σmin(Ex0∼D[x0x

T
0 ]) (9)

Assuming that in our problem setup, x0, Q,R,A,B were fixed, this means many of the parameters in the
bounds are constant, and thus we conclude:

C(K ′)− C(K) ≤ O
(
C(K)2

[
‖K‖2 ‖K −K ′‖ (‖A−BK‖+ ‖B‖+ 1) + ‖K‖ ‖K −K ′‖2

])
(10)

Since we assumed ‖A−BK‖ ≤ 1 or else TK(X) is infinite and in this scheme O(‖K ′ −K‖) = O(‖K‖),
we thus finally collect the terms to get the bound we will use in the next sections:

C(K ′)− C(K) ≤ O
(
C(K)2 ‖K‖3

)
= O(C(K)2 ‖K ′ −K‖3) (11)

A.4.2 Observational Projections

Let C(·) be the cost function S → R for a policy acting on the state space, and without loss of generality,
normalize the constants in (11) so that C(K ′)−C(K) ≤ ‖K ′ −K‖3. In the observational projection case, we
note that an observation of Ws with policy K is exactly the same as the case when the observation is s and the
policy isKW . In our experiments, a semi-orthogonalW is sampled from combining two samples from f and g
and normalizing. The experiments allowedWobs to be a matrix of size (dobs, dstate), andK size (daction, dobs).
Using (11), we see that C(KW

(1)
obs)− C(KW

(2)
obs) ≤ ‖KW1 −KW2‖3 ≤ ‖K‖3 ‖W1 −W2‖3.

The dominant term in this expression is ‖K‖. We can examine how much it scales as a function of the
dimension dobs, since for any random K since for any K, we can form an LQR with K as optimal policy,
which means random matrix theory can provide insights into the distribution of ‖KW‖. It is established (Vu,
2007) that for random matrices of such dimensions dobs � daction, ‖K‖ scales with the dimension, with
growth bound of O(d

1/3
obs ).

A.4.3 Generalization Bounds for LQR linear case

We can think of the semi-orthogonal samples W1,W2, ... as the “randomly sampled datapoints” from a
distribution Dobs analogous to supervised learning. If we fix A,B,Q,R, then we may write our cost function
in LQR as Ci(K) = C(KW ). Note that C(·) ∈ [0,M ] for some maximal value M based on A,B,Q,R, x0.

Then, for a fixed K, and drawing infinite samples of Wi, we define the following:

CDobs(K) = EW∼Dobs [C(KW )] (12)
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Optimizing this infinite sample case is optimizing the ”true cost function”. However, if we have finite samples
Sm = {W1, ...,Wm}, we can define the average sample cost as

ĈSm(K) =
1

|S|
∑
Wi∈S

C(KWi) =
1

|S|
∑
i

Ci(K) (13)

We apply the standard proof of generalization gap: From definition of supremum, for a fixed K ∈ K denote

gap = CDobs(K)− ĈSm(K) ≤ sup
Kmax∈K

(
CDobs(Kmax)− ĈSm(Kmax)

)
(14)

Denote random variable ψ(S) = supKmax∈K

(
CDobs(Kmax)− ĈSm(Kmax)

)
. We need to understand how

much ψ changes as a result of changing the samples Wi.

A common approach to forming generalization gap bounds comes from the McDiarmid inequality:

Suppose K is fixed. If ψ(S) satisfies:

sup
W1,...,Wm

|ψ(W1, ...Wi, ...,Wm)− ψ(W1, ...Wi′ , ...,Wm)| ≤ ci (15)

Then
Pr[ψ(S)− ES [ψ(S)] ≥ ε] ≤ e−2ε2/

∑m
i=1 c

2
i (16)

Suppose that we only changed one of the samples Wi. Then we can use our main equation (11) above, to get

ci =
1

m
O
(
C(KWi)

2 ‖K‖3
)

(17)

Plugging this in, we then get with probability at least 1− δ,

ψ(S) ≤ E[ψ(S)] +

√√√√( ln(1/δ)C(K)2 ‖K‖3

m

)
(18)

Note that this equation (A.4.3) essentially is the main term found in Theorem 3.1.

To bound ES [ψ(S)] from equation A.4.3, we use the standard definition of Rademacher complexity:

ES [ψ(S)] ≤ 2Rm(K) (19)

where Rademacher complexity is defined for our case as:

Rm(K) =
1

m
Eσ

[
sup
K∈K

m∑
i=1

σiCi(K)

]
(20)

To ease on notation, assume supK = supK∈K. We use the following standard technique from (Meir & Zhang,
2003):

Eσ1,...,σm−1

[
sup
K

m−1∑
i=1

σiCi(K)

]
(21)

= Eσ1,...,σm

[
1

2

(
sup
K

m−1∑
i=1

σiCi(K) + σmCm(K) + sup
K′

m−1∑
i=1

σiCi(K
′)− σmCm(K ′)

)]
(22)
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= Eσ

[
sup
K,K′

1

2

(
m−1∑
i=1

σiCi(K) + σiCi(K
′) + σmCm(K)− σmCm(K ′)

)]
(23)

≤ Eσ

[
sup
K,K′

1

2

(
m−1∑
i=1

σiCi(K) + σiCi(K
′) + σm ‖(K −K ′)Wm‖

3

)]
(24)

which implies that after unrolling the induction step m times,

Eσ1,...,σm

[
sup
K

m∑
i=1

σiCi(K)

]
≤ Eσ

[
sup
K,K′

1

2

m∑
i=1

σi ‖(K −K ′)Wi‖
3

]
(25)

= Eσ

[
sup
K

1

2

m∑
i=1

σi ‖KWi‖3
]

(26)

where the previous equality holds sinceK is a convex set, and thus the set of all possible differencesK−K = K.

This is upper bounded by:

Eσ

[
sup
K

1

2

m∑
i=1

σi ‖K‖3 ‖Wi‖3
]

= Eσ

[
sup
K

1

2
‖K‖3

m∑
i=1

σi

]
(27)

where the last equality follows since ‖Wi‖ = 1.

We note that if
∑m
i=1 σi < 0, then the optimum K satisfies ‖K‖ = 0, and otherwise ‖K‖3 is maximized -

abusing notation slightly, let supK ‖K‖
3

= ‖K‖3. Hence the previous term from (27) is upper bounded by:

≤ Eσ ‖K‖3
[

1

2

∣∣∣∣∣
m∑
i=1

σi

∣∣∣∣∣
]

= O(
√
m) (28)

where the last equation follows from a well known property of Rademacher variables, which then follows that
Rm(K) ≤ O(

√
m)

m = O( 1√
m

).

Hence it follows that gathering all terms, we have finally:

gap ≤ 2Rm(K) +

√√√√( ln(1/δ)C(K)2 ‖K‖3

m

)
≤ O

(
1√
m
‖K‖3/2

)
(29)

Since from A.4.2, ‖K‖ ∼ O(d
1/3
obs ), Theorem 3.1 presented from the main section follows.
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